Volcanoes and muons

VESUVII
Prout ab Authore
At 1638, vifus fair

Paolo Strolin Università Federico II and INFN, Napoli NOW 2012, Sept. 9-16, 2012

- · Muon Radiography: concept, history, what's for
- Pioneering radiographies of volcanoes in Japan
- La Soufrière of Guadeloupe: DIAPHANE
- Puy de Dôme: TOMUVOL
- Stromboli: nuclear emulsion
- The challenge (dream) of Mt. Vesuvius: MU-RAY
- Final remarks

Muons: a gift of Nature from the Cosmos

Cosmic ray interactions in the atmosphere generate

high energy muons

from pion decays

penetrating particles

no strong interactions little brehmstrahlung

 $(\sim 200 \text{ x electron mass})$

"Muon Radiography"

Muon radiography

"See the invisible" as a "shadow" by observing muon absorption (or scattering) depending on density (or Z) of matter

As with X-rays

The early work

Cosmic Rays Measure Overburden of Tunnel

Fig. 1—Geiger counter "telescope" in operation in the Guthega-Munyang tunnel. From left are Dr. George and his assistants, Mr. Lehane and Mr. O'Neill.

Geiger counter telescope used for mass determination at Guthega project of Snowy Scheme . . . Equipment described

E. P. George, Commonwealth Engineer (1955) 455

The first "radiography"

Search for hidden chambers in the Chephren's Pyramid

L.W. Alvarez et al. Science 167 (1970) 832

No hidden chamber

Spark chamber "muon telescope"

Telescope in Belzoni chamber

Data

Simulation with chamber

Possible applications in various fields

Archaeology, Civil Engineering, Security, Geological structures Volcanoes

Breakthrough of Muon Radiography with volcanoes

The interior of volcanoes: a fascinating question

Athanasius Kircher, Mt. Vesuvius (1638)

Hypothesis that volcanoes are connected to the interior of the Earth

Muon radiography of volcanoes

- <u>Detect quasi-horizontal muons having traversed the volcano</u>
- Determine the muon <u>absorption</u> as a function of direction
- Construct an "<u>image</u>" (in projective geometry) of the <u>average rock density</u>

The seminal paper

K. Nagamine

Geo-tomographic observation of inner-structure of volcano with cosmic-ray muons J. Geography, 104 (1995) 998

How large and penetrating is the muon flux?

The water delisity,

What's for

Imaging technique

Intrinsic <u>resolution</u>: tens of m

Higher than with conventional indirect techniques (seismic, gravimetric, ...)

Practical limitation from statistics

Can detect evolution with time, depending on muon rate

Potentially 3D, synergy with conventional techniques

Limited to the volcano's edifice

(very strong muon absorption beyond 1 km thickness)

Input to simulations to predict "how" an eruption could develop

No information on "when" it may happen

Pioneering radiography: Asama volcano

Nuclear emulsion

(same as in OPERA experiment) for the muon telescope

Below the caldera, a (blue) region with lower density

H.K.M. Tanaka and coll. EPS Lett. 263 (2007) 104

How light and muons see the Usu lava dome

Nuclear emulsion for the muon telescope

H.K.M. Tanaka and I. Yokoyama, Proc. Jpn. Acad. B84 (2008) 107

La Soufrière of Guadeloupe

In the last 12,000 years:

a succession of

lava dome eruptions
with explosive phases
intercalated with
prolonged periods of
ash-producing phreatic
explosive activity

One of the most hazardous in the Lesser Antilles

Mountain profile and DIAPHANE detector

Reference rock density for analysis 1.3 g/cm³ (rather low)

Max 1 km

Plastic scintillator strips

(as in OPERA experiment)

5 cm strip width

3 x-y planes

1 m telescope length

1 m² area

~ 3 month exposures

(investigations started at Etna using a similar detector)

Muon Radiography by DIAPHANE

N. Lesparre et al., Geophys. J. Int. (2012) 1

Average density deviation $\Delta \rho$ with respect to reference density 1.3 g/cm³

Strong density structure (about ±30%)
Two observation points (→ 3D in the future)
Correlation with electrical resistivity and gravity measurements
In the future inversion of combined data

Le Puy de Dôme in the Massif Central (France)

A 400 m high trachytic dome (height gives scale of rock thickness)

The morphology suggests the presence of two units

~11,000 years old Last eruption ~8,000 years ago

~10 km from Clermont Ferrand

A "laboratory"
for collaborative work:
standard infrastructure,
understand methodology and
backgrounds

TOMUVOL detector and expected visible zone

Glass RPCs
(possible because in a building)
3 planes
1 m telescope length
1 m² area
~ 2 month exposure in 2012
~107 candidate tracks

Assumptions:
Rock density 1.66 g/cm³
No background

Background problem expected at the base

Preliminary result by TOMUVOL

V. Niess, MNR 2012, Clermont Ferrand

Absorption coefficient scaled with rock thickness

Hints of a structure in the summit region At the base, background tracks mimic a higher transmission

Stromboli

- "Strombolian" activity
 - essentially open conduit
 - intermittent eruptions due to build up of gas pressure
 - rare effusive activity
- Summit at 926 m a.s.l.
- Crater at ~ 750 m a.s.l.

Muon Radiography of Stromboli

- Scientifically very interesting
 - Open conduit
 - Studied at best using conventional techniques
 - Synergy by combining information
- Large rock thickness
 - similar problems as for Mt. Vesuvius (see later on)
 - <u>harsher environment</u>
- Top part of the conduit (crater region)
 being investigated using OPERA nuclear emulsion

Emulsion telescope: very compact

4 emulsion films / 8 emulsion layers / 8 micro-tracks Redundant and precise (µm resolution) tracking Angular resolution ~10 mrad

Iron to absorb soft electrons, identify low en. μ (scattering)

Transportable, no infrastructure

Muon Radiography of the crater region

A 1 m² nuclear emulsion telescope has taken data last winter (5 months)

Nuclear emulsion suffer high temperature

Exposure 22/10/2011 – 24/3/2012 Acceptable temperature

Expected events

(in absence of background)

To see deeper inside the volcano: a challenge as for Mt. Vesuvius

The most violent explosive eruptions \rightarrow 1631

(www.ov.ingv.it)

Before the A.D. 79 eruption: seen as a "mountain" by Pompeii people?

This is Vesuvius, green yesterday with viny shades; here had the noble grape loaded the dripping vats; these ridges Bacchus loved

Martial, Epigrams (IV.44)

Dionysus (Bacchus) and (presumably) Mt. Somma

Fresco from Casa del Centenario, Pompeii Now at Naples Archaeological Museum

The A.D. 79 plinian eruption

A vast area covered by pyroclastic flow

Destruction of the towns Pompeii, Herculaneum and Stabiae

Read

C. Plinius Caecilius Secundus (Pliny the Younger) Letters to C. Tacitus VI.16 and VI.20

from www.ov.ingv.it

The last sub-plinian eruption (1631)

Micco Spadaro (1610-1675): San Gennaro stops the eruption

The 1872 eruption

The 1906 eruption

"Frightening explosion of Mt. Vesuvius 150,000 people fled away"

(in times when the population around and on the slopes of Mt. Vesuvius was by far less dense than it is now)

The last eruption (1944)

Documented by reporters of the Allied Army at the end of the 2° World War

Periodicity in the years 1631 - 1944

- 18 "Strombolian" periods: conduit essentially open
- Each period closed by a violent "final" eruption (explosive and effusive)
- Within each period mainly effusive eruptions

Quiescence never longer than 7 years

After the "terminal" 1944 eruption

- Transition to a state with <u>closed conduit</u>
- **Quiescence since** ~ 70 years (>> 7 years)!

Today's Vesuvius looks "unusual" compared to its history

A huge stored energy?

A. Warhol (1928-1987): Vesuvius (1985)
Capodimonte Museum, Naples

The highest volcanic risk in Europe

Strongly motivates the challenge of a muon radiography

Present morphology

- Gran Cono (Mt. Vesuvius)
 - summit at 1280 m a.s.l.,
 - a deep caldera inside (bottom at 950 m a.s.l.)
- Grown in the caldera of an older, higher volcano (Mt. Somma)
- A secondary cone (Colle Umberto) "born" in 1898

Rock thickness at Mt. Vesuvius

2 km rock thickness from a telescope at 750 m a.s.l.

Substantially improve the sensitivity (x 10²) with respect to previous radiographies (< 1 km rock)

Muon flux reduction for $1 \rightarrow 2$ km rock thickness

Plot from HTM Tanaka et al., EPS 62 (2010) 119

To improve the sensitivity $x 10^2$

- Area: $1 \rightarrow 10 \text{ m}^2 \text{ or more}$ (array of telescopes)
- Large number of channels: reduce power/channel
- Data taking: months \rightarrow years
- Background rejection is crucial: new tools

The detector must be suitable to work in volcanic environments without electricity supply

In any field, the progress comes from new technologies

The "Livingston plot"

Saturation in energy for any accelerator technology

Experimental techniques

NUCLEAR EMULSION

Precise muon tracking
Resolution ~10 mrad (as scattering)
Minimal infrastructure
No electric power
Usable in difficult locations
Unusable in warm season
Area limited by scanning power

PLASTIC SCINTILLATOR STRIPS

Analysis in real-time
Increase n. of channels: improve resolution
Time of flight possible: b.g. reduction
Larger area possible
Long exposures possible
New technologies to reduce el. power

Plastic scintillators to see through > 1 km

A new technology: Silicon Photo-Multipliers (SiPM)

- Matrix of diodes operated in Geiger mode (inverse polarization)
- Analog sum of the signals
 - \rightarrow **amplification** $\sim 10^6$ (depending on temperature)
 - \rightarrow proportionality
- Solid state device (as transistor replacing thermionic tubes)
 - → dark noise problem (depending on temperature): apply sharp threshold
 - \rightarrow no HV and very low power consumption (tens of μW)

 $\Phi = 1.4 \text{ mm}, \sim 300 \text{ diodes}$

A "naked" SiPM

by FBK-IRST (Trento, Italy) developed in a joint venture with INFN

Best producer: Hamamatsu, but

Need investment in time and efforts

The MU-RAY muon telescope

- Plastic scintillators strips
 of triangular section with 3.3 cm base
- WLS fibres and SiPMs
- Front-end ASIC chip Spiroc
- Precise and redundant tracking
 3 x-y measuring stations or more
 5 mm space resolution possible
 - ~ 10 mrad **angular resolution**
- <u>Time of Flight</u> for b.g. reduction
- Event-by-event information: p.h., for b.g. reduction
- 1 m² prototype telescope tested
- Soon at Mt. Vesuvius... plans for Puy de Dôme lab

Expected from the 1 m² prototype telescope

(one year run, no background)

Mt. Somma

A first step in the "Mt. Vesuvius challenge"

Final remarks

- · "See" inside volcanoes: an historical dream
- Conventional methods (seismic, ...): indirect information
- · Muon Radiography: "imaging", high intrinsic resolution
- Pioneering radiographies in Japan
- La Soufrière Guadeloupe: first results
- Puy de Dôme: preliminary results, a "laboratory"
- Stromboli: exposure of nuclear emulsion
- Mt. Vesuvius: large rock thickness, a challenge (dream)

Muon Radiography of volcanoes still at its beginnings
Particle Physics techniques for Society